66=x+x^2+(x-4)

Simple and best practice solution for 66=x+x^2+(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 66=x+x^2+(x-4) equation:



66=x+x^2+(x-4)
We move all terms to the left:
66-(x+x^2+(x-4))=0
We calculate terms in parentheses: -(x+x^2+(x-4)), so:
x+x^2+(x-4)
determiningTheFunctionDomain x^2+x+(x-4)
We get rid of parentheses
x^2+x+x-4
We add all the numbers together, and all the variables
x^2+2x-4
Back to the equation:
-(x^2+2x-4)
We get rid of parentheses
-x^2-2x+4+66=0
We add all the numbers together, and all the variables
-1x^2-2x+70=0
a = -1; b = -2; c = +70;
Δ = b2-4ac
Δ = -22-4·(-1)·70
Δ = 284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{284}=\sqrt{4*71}=\sqrt{4}*\sqrt{71}=2\sqrt{71}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{71}}{2*-1}=\frac{2-2\sqrt{71}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{71}}{2*-1}=\frac{2+2\sqrt{71}}{-2} $

See similar equations:

| 0=+2x4 | | +2x4= | | 1/2x+1/5x=2 | | 12-8x=3x+12-x | | 4x-9=3-5x | | 18y/27+y=6 | | y+1/y-1=2y+3/2y+5 | | 0.12x=0.06x^2 | | 27/x*3=729 | | 4x3x=5x | | 301=5+(n-1)*6 | | 9x-5x=13x | | z*4=76 | | n=21+(n–1)(–3) | | 7y+31=220 | | 63n=88n | | -10n-15=-135 | | 2^3+a*2^2+6*2-12=0 | | 2*2^4-6*2^3+3*2^2+3*2-2=x | | n=(0-1)*(-3) | | x–10=20 | | x/x–10=20 | | Y=x/6+7 | | 4*1+3*1-4*1+k=0 | | n=-3(-1+n)= | | a-14=-16+a | | 26=6+22*6/z | | 2p^2+18p=28 | | (6x-1)/(4)-(5-2x)/(2)=1 | | 2-x=6x+16 | | -5x+2+3=3x+2x-1 | | 3(x-2)^2-5=70 |

Equations solver categories